Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396896

RESUMO

Late cardiotoxicity is a formidable challenge in anthracycline-based anticancer treatments. Previous research hypothesized that co-administration of carvedilol (CVD) and dexrazoxane (DEX) might provide superior protection against doxorubicin (DOX)-induced cardiotoxicity compared to DEX alone. However, the anticipated benefits were not substantiated by the findings. This study focuses on investigating the impact of CVD on myocardial redox system parameters in rats treated with DOX + DEX, examining its influence on overall toxicity and iron metabolism. Additionally, considering the previously observed DOX-induced ascites, a seldom-discussed condition, the study explores the potential involvement of the liver in ascites development. Compounds were administered weekly for ten weeks, with a specific emphasis on comparing parameter changes between DOX + DEX + CVD and DOX + DEX groups. Evaluation included alterations in body weight, feed and water consumption, and analysis of NADPH2, NADP+, NADPH2/NADP+, lipid peroxidation, oxidized DNA, and mRNA for superoxide dismutase 2 and catalase expressions in cardiac muscle. The iron management panel included markers for iron, transferrin, and ferritin. Liver abnormalities were assessed through histological examinations, aspartate transaminase, alanine transaminase, and serum albumin level measurements. During weeks 11 and 21, reduced NADPH2 levels were observed in almost all examined groups. Co-administration of DEX and CVD negatively affected transferrin levels in DOX-treated rats but did not influence body weight changes. Ascites predominantly resulted from cardiac muscle dysfunction rather than liver-related effects. The study's findings, exploring the impact of DEX and CVD on DOX-induced cardiotoxicity, indicate a lack of scientific justification for advocating the combined use of these drugs at histological, biochemical, and molecular levels.


Assuntos
Ascite , Cardiotoxicidade , Ratos , Animais , Carvedilol/farmacologia , NADP/metabolismo , Cardiotoxicidade/metabolismo , Ascite/patologia , Doxorrubicina/uso terapêutico , Miocárdio/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Ferro/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Transferrina/metabolismo , Peso Corporal
2.
Cancer Res ; 84(7): 1101-1114, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285895

RESUMO

Impairing the BET family coactivator BRD4 with small-molecule inhibitors (BETi) showed encouraging preclinical activity in treating acute myeloid leukemia (AML). However, dose-limiting toxicities and limited clinical activity dampened the enthusiasm for BETi as a single agent. BETi resistance in AML myeloblasts was found to correlate with maintaining mitochondrial respiration, suggesting that identifying the metabolic pathway sustaining mitochondrial integrity could help develop approaches to improve BETi efficacy. Herein, we demonstrated that mitochondria-associated lactate dehydrogenase allows AML myeloblasts to utilize lactate as a metabolic bypass to fuel mitochondrial respiration and maintain cellular viability. Pharmacologically and genetically impairing lactate utilization rendered resistant myeloblasts susceptible to BET inhibition. Low-dose combinations of BETi and oxamate, a lactate dehydrogenase inhibitor, reduced in vivo expansion of BETi-resistant AML in cell line and patient-derived murine models. These results elucidate how AML myeloblasts metabolically adapt to BETi by consuming lactate and demonstrate that combining BETi with inhibitors of lactate utilization may be useful in AML treatment. SIGNIFICANCE: Lactate utilization allows AML myeloblasts to maintain metabolic integrity and circumvent antileukemic therapy, which supports testing of lactate utilization inhibitors in clinical settings to overcome BET inhibitor resistance in AML. See related commentary by Boët and Sarry, p. 950.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Animais , Camundongos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ácido Láctico , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Lactato Desidrogenases , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
3.
Haematologica ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38152031

RESUMO

CD47-SIRPa is a myeloid check point pathway that inhibits phagocytosis of cells lacking markers for self-recognition. Tumor cells can overexpress CD47 and bind to SIRPa on macrophages, preventing phagocytosis. CD47 expression is enhanced and correlated with a negative prognosis in Acute Myeloid Leukemia (AML), with its blockade leading to cell clearance. ALX90 is an engineered fusion protein with high-affinity for CD47. Composed of the N-terminal D1 domain of SIRPα genetically linked to an inactive Fc domain from human IgG, ALX90 is designed to avoid potential toxicity of CD47-expressing red blood cells. Venetoclax (VEN) is a specific B-cell lymphoma-2 (BCL-2) inhibitor that can restore apoptosis in malignant cells. In AML VEN is combined with azanucleosides to induce superior remission rates, however treatment for refractory/relapse is an unmet need. We questioned whether the anti-tumor activity of a VEN based regimen can be augmented through CD47 inhibition (CD47i) in AML. Human AML cell lines were sensitive to ALX90 and its addition increased efficacy of a VEN+AZA regimen in vivo. However, CD47i failed to clear bone marrow tumor burden in PDX models. We hypothesized that in cases of high medullary tumor burden, loss of resident macrophages reduced ALX efficiency. Therefore, we attempted to enhance this medullary macrophage population with agonism of TLR3 via Poly(I:C), which led to expansion and activation of medullary macrophages in in vivo AML PDX models and potentiated CD47i. In summary, the addition of Poly(I:C) can enhance medullary macrophage populations to potentiate the phagocytosis merited by therapeutic inhibition of CD47.

4.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966113

RESUMO

Effective eradication of leukemic stem cells (LSCs) remains the greatest challenge in treating acute myeloid leukemia (AML). The immune receptor LAIR-1 has been shown to regulate LSC survival; however, the therapeutic potential of this pathway remains unexplored. We developed a therapeutic LAIR-1 agonist antibody, NC525, that induced cell death of LSCs, but not healthy hematopoietic stem cells in vitro, and killed LSCs and AML blasts in both cell- and patient-derived xenograft models. We showed that LAIR-1 agonism drives a unique apoptotic signaling program in leukemic cells that was enhanced in the presence of collagen. NC525 also significantly improved the activity of azacitidine and venetoclax to establish LAIR-1 targeting as a therapeutic strategy for AML that may synergize with standard-of-care therapies.


Assuntos
Leucemia Mieloide Aguda , Animais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo
5.
J Phys Chem B ; 127(46): 9887-9890, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37946359

RESUMO

Various concentrations (8-300 mmol/L) of NaCl, KCl, and NaCl + KCl aqueous solutions were investigated using positron annihilation lifetime spectroscopy (PALS). A strong dependence of the o-Ps intensity as a function of the solution concentration was demonstrated. On this basis, the mean positron lifetime and the sum of counts in a selected time interval were proposed as reliable parameters for detecting disturbances in the ion balance of living organisms. The use of these parameters for differentiating healthy and cancerous tissues allows for the development of auxiliary diagnostic methods in a new generation of PET scanners equipped with a PALS detection module.


Assuntos
Elétrons , Cloreto de Sódio , Análise Espectral/métodos , Tomografia por Emissão de Pósitrons , Eletrólitos
6.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373350

RESUMO

The anticancer efficacy of doxorubicin (DOX) is dose-limited because of cardiomyopathy, the most significant adverse effect. Initially, cardiotoxicity develops clinically silently, but it eventually appears as dilated cardiomyopathy with a very poor prognosis. Dexrazoxane (DEX) is the only FDA-approved drug to prevent the development of anthracycline cardiomyopathy, but its efficacy is insufficient. Carvedilol (CVD) is another product being tested in clinical trials for the same indication. This study's objective was to evaluate anthracycline cardiotoxicity in rats treated with CVD in combination with DEX. The studies were conducted using male Wistar rats receiving DOX (1.6 mg/kg b.w. i.p., cumulative dose: 16 mg/kg b.w.), DOX and DEX (25 mg/kg b.w. i.p.), DOX and CVD (1 mg/kg b.w. i.p.), or a combination (DOX + DEX + CVD) for 10 weeks. Afterward, in the 11th and 21st weeks of the study, echocardiography (ECHO) was performed, and the tissues were collected. The addition of CVD to DEX as a cardioprotective factor against DOX had no favorable advantages in terms of functional (ECHO), morphological (microscopic evaluation), and biochemical alterations (cardiac troponin I and brain natriuretic peptide levels), as well as systemic toxicity (mortality and presence of ascites). Moreover, alterations caused by DOX were abolished at the tissue level by DEX; however, when CVD was added, the persistence of DOX-induced unfavorable alterations was observed. The addition of CVD normalized the aberrant expression of the vast majority of indicated genes in the DOX + DEX group. Overall, the results indicate that there is no justification to use a simultaneous treatment of DEX and CVD in DOX-induced cardiotoxicity.


Assuntos
Cardiomiopatias , Dexrazoxano , Masculino , Ratos , Animais , Dexrazoxano/farmacologia , Dexrazoxano/uso terapêutico , Antraciclinas/efeitos adversos , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Ratos Wistar , Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Cardiomiopatias/tratamento farmacológico , Doxorrubicina/farmacologia , Inibidores da Topoisomerase II/uso terapêutico
7.
Basic Res Cardiol ; 118(1): 25, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378715

RESUMO

RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.


Assuntos
Insuficiência Cardíaca , Serina-Treonina Quinases TOR , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Camundongos , Ratos
8.
Genes (Basel) ; 13(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35741768

RESUMO

The current hypothesis, along with the opinion of the breeders, is that a cat with two copies of the white spotting allele (SS) has white on more than half of its body, while a cat with only one copy (Ss) has white on less than half of its body. The present study was based on the analysis of two large pedigree databases of Siberian cats (23,905 individuals in PawPeds and 21,650 individuals in Felis Polonia database). The distribution of the amount of white spotting in the offspring of cats with different amounts of white was investigated. Significant differences compared to expected distributions were observed. In many cases the amount of white in cats that were supposed to be homozygous was less than 50% of the body, while in many supposedly heterozygous cats a very large amount of white (over 50%) was observed. This phenomenon was also presented on the verified examples of the specific families excluding possible errors in determining the amount of white by the breeder. The collected evidence suggests that there are other factors involved in the inheritance of the amount of white in cats and the current hypothesis should be revised.


Assuntos
Cor de Cabelo , Padrões de Herança , Alelos , Animais , Gatos/genética , Linhagem , Fenótipo
9.
Haematologica ; 107(4): 825-835, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33853293

RESUMO

Dysregulation of apoptotic machinery is one mechanism by which acute myeloid leukemia (AML) acquires a clonal survival advantage. B-cell lymphoma protein-2 (BCL2) overexpression is a common feature in hematologic malignancies. The selective BCL2 inhibitor, venetoclax (VEN) is used in combination with azacitidine (AZA), a DNAmethyltransferase inhibitor (DNMTi), to treat patients with AML. Despite promising response rates to VEN/AZA, resistance to the agent is common. One identified mechanism of resistance is the upregulation of myeloid cell leukemia-1 protein (MCL1). Pevonedistat (PEV), a novel agent that inhibits NEDD8-activating enzyme, and AZA both upregulate NOXA (PMAIP1), a BCL2 family protein that competes with effector molecules at the BH3 binding site of MCL1. We demonstrate that PEV/AZA combination induces NOXA to a greater degree than either PEV or AZA alone, which enhances VEN-mediated apoptosis. Herein, using AML cell lines and primary AML patient samples ex vivo, including in cells with genetic alterations linked to treatment resistance, we demonstrate robust activity of the PEV/VEN/AZA triplet. These findings were corroborated in preclinical systemic engrafted models of AML. Collectively, these results provide rational for combining PEV/VEN/AZA as a novel therapeutic approach in overcoming AML resistance in current therapies.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Ciclopentanos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Pirimidinas , Sulfonamidas
10.
EMBO Rep ; 22(12): e52170, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34605609

RESUMO

The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome-wide sequencing to define mTOR-dependent gene expression control at the level of mRNA translation. We identify the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling.


Assuntos
Miócitos Cardíacos , Remodelação Ventricular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Musculares , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Fatores de Transcrição , Regulação para Cima , Remodelação Ventricular/genética
11.
Target Oncol ; 16(5): 663-674, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324169

RESUMO

BACKGROUND: All-trans retinoic acid (ATRA), a derivate of vitamin A, has been successfully used as a therapy to induce differentiation in M3 acute promyelocytic leukemia (APML), and has led to marked improvement in outcomes. Previously, attempts to use ATRA in non-APML in the clinic, however, have been underwhelming, likely due to persistent signaling through other oncogenic drivers. Dysregulated JAK/STAT signaling is known to drive several hematologic malignancies, and targeting JAK1 and JAK2 with the JAK1/JAK2 inhibitor ruxolitinib has led to improvement in survival in primary myelofibrosis and alleviation of vasomotor symptoms and splenomegaly in polycythemia vera and myelofibrosis. OBJECTIVE: While dose-dependent anemia and thrombocytopenia limit the use of JAK2 inhibition, selectively targeting JAK1 has been explored as a means to suppress inflammation and STAT-associated pathologies related to neoplastogenesis. The objective of this study is to employ JAK1 inhibition (JAK1i) in the presence of ATRA as a potential therapy in non-M3 acute myeloid leukemia (AML). METHODS: Efficacy of JAK1i using INCB52793 was assessed by changes in cell cycle and apoptosis in treated AML cell lines. Transcriptomic and proteomic analysis evaluated effects of JAK1i. Synergy between JAK1i+ ATRA was assessed in cell lines in vitro while efficacy in vivo was assessed by tumor reduction in MV-4-11 cell line-derived xenografts. RESULTS: Here we describe novel synergistic activity between JAK1i inhibition and ATRA in non-M3 leukemia. Transcriptomic and proteomic analysis confirmed structural and functional changes related to maturation while in vivo combinatory studies revealed significant decreases in leukemic expansion. CONCLUSIONS: JAK1i+ ATRA lead to decreases in cell cycle followed by myeloid differentiation and cell death in human leukemias. These findings highlight potential uses of ATRA-based differentiation therapy of non-M3 human leukemia.


Assuntos
Leucemia Mieloide Aguda , Leucemia , Diferenciação Celular , Humanos , Janus Quinase 1 , Proteômica , Fator de Transcrição STAT5 , Tretinoína/farmacologia
12.
Exp Hematol ; 97: 57-65.e5, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617893

RESUMO

Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome/myeloproliferative neoplasm overlap syndrome characterized by monocytic proliferation in the presence of dysplastic bone marrow changes, inflammatory symptoms, and propensity for transformation to acute myeloid leukemia (AML), with a poor prognosis and limited treatment options. Unlike the α and ß isoforms, the phosphatidylinositol-3-kinase (PI3K)-δ signaling protein is predominantly expressed by hematopoietic cells and therefore has garnered interest as a potential target for the treatment of lymphomas and leukemias. We revealed a pattern of increased PIK3CD:PIK3CA ratio in monocytic M5 AML patients and cell lines, and this ratio correlated with responsiveness to pharmacological PI3K-δ inhibition in vitro. Because CMML is a disease defined by monocytic clonal proliferation, we tested the PI3K-δ inhibitor umbralisib as a single agent and in combination with the JAK1/2 inhibitor ruxolitinib, in CMML. Our ex vivo experiments with primary CMML patient samples revealed synergistic inhibition of viability and clonogenicity with this combination. Phospho-specific flow cytometry revealed that dual inhibition had the unique ability to decrease STAT5, ERK, AKT, and S6 phosphorylation simultaneously, which offers a mechanistic hypothesis for the enhanced efficacy of the combination treatment. These preclinical data indicate promising activity by co-inhibition of PI3K-δ and JAK1/2 and support the use of ruxolitinib + umbralisib combination therapy in CMML under active clinical investigation.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirazóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Sinergismo Farmacológico , Humanos , Leucemia Mielomonocítica Crônica/enzimologia , Terapia de Alvo Molecular , Nitrilas , Pirimidinas
13.
Clin Cancer Res ; 27(2): 598-607, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33148670

RESUMO

PURPOSE: The BCL2 inhibitor, venetoclax, has transformed clinical care in acute myeloid leukemia (AML). However, subsets of patients do not respond or eventually acquire resistance. Venetoclax-based regimens can lead to considerable marrow suppression in some patients. Bromodomain and extraterminal inhibitors (BETi) are potential treatments for AML, as regulators of critical AML oncogenes. We tested the efficacy of novel BET inhibitor INCB054329, and its synergy with venetoclax to reduce AML without induction of hematopoietic toxicity. EXPERIMENTAL DESIGN: INCB054329 efficacy was assessed by changes in cell cycle and apoptosis in treated AML cell lines. In vivo efficacy was assessed by tumor reduction in MV-4-11 cell line-derived xenografts. Precision run-on and sequencing (PRO-seq) evaluated effects of INCB054329. Synergy between low-dose BETi and venetoclax was assessed in cell lines and patient samples in vitro and in vivo while efficacy and toxicity was assessed in patient-derived xenograft (PDX) models. RESULTS: INCB054329 induced dose-dependent apoptosis and quiescence in AML cell lines. PRO-seq analysis evaluated the effects of INCB054329 on transcription and confirmed reduced transcriptional elongation of key oncogenes, MYC and BCL2, and genes involved in the cell cycle and metabolism. Combinations of BETi and venetoclax led to reduced cell viability in cell lines and patient samples. Low-dose combinations of INCB054329 and venetoclax in cell line and PDX models reduced AML burden, regardless of the sensitivity to monotherapy without development of toxicity. CONCLUSIONS: Our findings suggest low dose combinations of venetoclax and BETi may be more efficacious for patients with AML than either monotherapy, potentially providing a longer, more tolerable dosing regimen.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mieloide/tratamento farmacológico , Compostos Orgânicos/farmacologia , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Doença Aguda , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
14.
Target Oncol ; 15(2): 231-240, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32222953

RESUMO

BACKGROUND: DNA methyltransferase inhibitors (DNMTis) improve survival for patients with myelodysplastic syndromes (MDS) and those with acute myeloid leukemia (AML) unable to receive standard cytotoxic chemotherapy and are, accordingly, the backbone of standard-of-care treatment for these conditions. Standard regimens with DNMTIs, decitabine (DEC) or azacitidine (AZA) include daily subcutaneous (s.c.) or intravenous (i.v.) administration for 5-7 consecutive days. Attempts to provide the therapy orally have been limited given rapid clearance of the agents by the enzyme cytidine deaminase (CDA), which is ubiquitous in the gut and liver as part of first-pass metabolism. Recently, cedazuridine (CDZ), an oral inhibitor of CDA, was successfully combined with DEC to approximate the pharmacokinetics of i.v. DEC in patients. OBJECTIVE: To determine if an oral dosing strategy might be feasible in the clinic with AZA, we attempted to increase the bioavailability of oral AZA through the use of CDZ, in a murine model. METHODS: Following pharmacokinetic and pharmacodynamic assessment of oral AZA dosed with CDZ in murine and monkey models, we tested this regimen in vivo with a human cell line-derived xenograft transplantation experiment (CDX). Following this we combined the regimen with venetoclax (VEN) to test the efficacy of an all-oral regimen in a patient-derived xenograft (PDX) model. RESULTS: Parenteral AZA and oral AZA + CDZ exhibited similar pharmacokinetic profiles, and efficacy against human AML cells. Tumor regression was seen with AZA + CDZ in MOLM-13 CDX and PDX models. CONCLUSIONS: We conclude that oral AZA when combined with CDZ achieves successful tumor regression in both CDX and PDX models. Furthermore, the combination of AZA + CDZ with VEN in a PDX model emulated responses seen with VEN + AZA in the clinic, implying a potential all-oral VEN-based therapy opportunity in myeloid diseases.


Assuntos
Azacitidina/uso terapêutico , Uridina/análogos & derivados , Administração Oral , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Modelos Animais de Doenças , Feminino , Haplorrinos , Humanos , Infusões Parenterais , Camundongos , Resultado do Tratamento , Uridina/uso terapêutico
15.
J Mol Cell Cardiol ; 141: 30-42, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32173353

RESUMO

Pathological cardiac hypertrophy is an independent risk for heart failure (HF) and sudden death. Deciphering signaling pathways regulating intracellular Ca2+ homeostasis that control adaptive and pathological cardiac growth may enable identification of novel therapeutic targets. The objective of the present study is to determine the role of the store-operated calcium entry-associated regulatory factor (Saraf), encoded by the Tmem66 gene, on cardiac growth control in vitro and in vivo. Saraf is a single-pass membrane protein located at the sarco/endoplasmic reticulum and regulates intracellular calcium homeostasis. We found that Saraf expression was upregulated in the hypertrophied myocardium and was sufficient for cell growth in response to neurohumoral stimulation. Increased Saraf expression caused cell growth, which was associated with dysregulation of calcium-dependent signaling and sarcoplasmic reticulum calcium content. In vivo, Saraf augmented cardiac myocyte growth in response to angiotensin II and resulted in increased cardiac remodeling together with worsened cardiac function. Mechanistically, Saraf activated mTORC1 (mechanistic target of rapamycin complex 1) and increased protein synthesis, while mTORC1 inhibition blunted Saraf-dependent cell growth. In contrast, the hearts of Saraf knockout mice and Saraf-deficient myocytes did not show any morphological or functional alterations after neurohumoral stimulation, but Saraf depletion resulted in worsened cardiac function after acute pressure overload. SARAF knockout blunted transverse aortic constriction cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for SARAF in compensatory myocyte growth. Collectively, these results reveal a novel link between sarcoplasmic reticulum calcium homeostasis and mTORC1 activation that is regulated by Saraf.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Coração/crescimento & desenvolvimento , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Sequência de Bases , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Tamanho Celular , Eletrocardiografia , Técnicas de Silenciamento de Genes , Testes de Função Cardíaca , Homeostase , Humanos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ratos
16.
Blood Adv ; 4(3): 586-598, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045477

RESUMO

The selective inhibitor of nuclear export (SINE) compounds selinexor (KPT-330) and eltanexor (KPT-8602) are from a novel class of small molecules that target exportin-1 (XPO1 [CRM1]), an essential nucleo-cytoplasmic transport protein responsible for the nuclear export of major tumor suppressor proteins and growth regulators such as p53, p21, and p27. XPO1 also affects the translation of messenger RNAs for critical oncogenes, including MYC, BCL2, MCL1, and BCL6, by blocking the export of the translation initiation factor eIF4E. Early trials with venetoclax (ABT-199), a potent, selective inhibitor of BCL2, have revealed responses across a variety of hematologic malignancies. However, many tumors are not responsive to venetoclax. We used models of acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) to determine in vitro and in vivo responses to treatment with venetoclax and SINE compounds combined. Cotreatment with venetoclax and SINE compounds demonstrated loss of viability in multiple cell lines. Further in vitro analyses showed that this enhanced cell death was the result of an increase in apoptosis that led to a loss of clonogenicity in methylcellulose assays, coinciding with activation of p53 and loss of MCL1. Treatment with SINE compounds and venetoclax combined led to a reduction in tumor growth in both AML and DLBCL xenografts. Immunohistochemical analysis of tissue sections revealed that the reduction in tumor cells was partly the result of an induction of apoptosis. The enhanced effects of this combination were validated in primary AML and DLBCL patient cells. Our studies reveal synergy with SINE compounds and venetoclax in aggressive hematologic malignancies and provide a rationale for pursuing this approach in a clinical trial.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Neoplasias Hematológicas , Transporte Ativo do Núcleo Celular , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Sulfonamidas
17.
Circ Res ; 125(4): 431-448, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31284834

RESUMO

RATIONALE: Gene expression profiles have been mainly determined by analysis of transcript abundance. However, these analyses cannot capture posttranscriptional gene expression control at the level of translation, which is a key step in the regulation of gene expression, as evidenced by the fact that transcript levels often poorly correlate with protein levels. Furthermore, genome-wide transcript profiling of distinct cell types is challenging due to the fact that lysates from tissues always represent a mixture of cells. OBJECTIVES: This study aimed to develop a new experimental method that overcomes both limitations and to apply this method to perform a genome-wide analysis of gene expression on the translational level in response to pressure overload. METHODS AND RESULTS: By combining ribosome profiling (Ribo-seq) with a ribosome-tagging approach (Ribo-tag), it was possible to determine the translated transcriptome in specific cell types from the heart. After pressure overload, we monitored the cardiac myocyte translatome by purifying tagged cardiac myocyte ribosomes from cardiac lysates and subjecting the ribosome-protected mRNA fragments to deep sequencing. We identified subsets of mRNAs that are regulated at the translational level and found that translational control determines early changes in gene expression in response to cardiac stress in cardiac myocytes. Translationally controlled transcripts are associated with specific biological processes related to translation, protein quality control, and metabolism. Mechanistically, Ribo-seq allowed for the identification of upstream open reading frames in transcripts, which we predict to be important regulators of translation. CONCLUSIONS: This method has the potential to (1) provide a new tool for studying cell-specific gene expression at the level of translation in tissues, (2) reveal new therapeutic targets to prevent cellular remodeling, and (3) trigger follow-up studies that address both, the molecular mechanisms involved in the posttranscriptional control of gene expression in cardiac cells, and the protective functions of proteins expressed in response to cellular stress.


Assuntos
Miócitos Cardíacos/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA/métodos , Disfunção Ventricular/genética , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Hemodinâmica , Masculino , Camundongos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/química , Estresse Fisiológico , Disfunção Ventricular/metabolismo
18.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30967445

RESUMO

Conceptually similar to modifications of DNA, mRNAs undergo chemical modifications, which can affect their activity, localization, and stability. The most prevalent internal modification in mRNA is the methylation of adenosine at the N6-position (m6A). This returns mRNA to a role as a central hub of information within the cell, serving as an information carrier, modifier, and attenuator for many biological processes. Still, the precise role of internal mRNA modifications such as m6A in human and murine-dilated cardiac tissue remains unknown. Transcriptome-wide mapping of m6A in mRNA allowed us to catalog m6A targets in human and murine hearts. Increased m6A methylation was found in human cardiomyopathy. Knockdown and overexpression of the m6A writer enzyme Mettl3 affected cell size and cellular remodeling both in vitro and in vivo. Our data suggest that mRNA methylation is highly dynamic in cardiomyocytes undergoing stress and that changes in the mRNA methylome regulate translational efficiency by affecting transcript stability. Once elucidated, manipulations of methylation of specific m6A sites could be a powerful approach to prevent worsening of cardiac function.


Assuntos
Adenosina/química , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Crescimento Celular , Proliferação de Células/genética , Regulação da Expressão Gênica , Miócitos Cardíacos/fisiologia , RNA Mensageiro/genética , Animais , Tamanho Celular , Células Cultivadas , Estudos de Coortes , Técnicas de Silenciamento de Genes , Humanos , Masculino , Metilação , Metiltransferases/genética , Camundongos , Biossíntese de Proteínas/genética , Ratos
19.
Cancer Discov ; 8(12): 1566-1581, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30185627

RESUMO

Suppression of apoptosis by expression of antiapoptotic BCL2 family members is a hallmark of acute myeloblastic leukemia (AML). Induced myeloid leukemia cell differentiation protein (MCL1), an antiapoptotic BCL2 family member, is commonly upregulated in AML cells and is often a primary mode of resistance to treatment with the BCL2 inhibitor venetoclax. Here, we describe VU661013, a novel, potent, selective MCL1 inhibitor that destabilizes BIM/MCL1 association, leads to apoptosis in AML, and is active in venetoclax-resistant cells and patient-derived xenografts. In addition, VU661013 was safely combined with venetoclax for synergy in murine models of AML. Importantly, BH3 profiling of patient samples and drug-sensitivity testing ex vivo accurately predicted cellular responses to selective inhibitors of MCL1 or BCL2 and showed benefit of the combination. Taken together, these data suggest a strategy of rationally using BCL2 and MCL1 inhibitors in sequence or in combination in AML clinical trials. SIGNIFICANCE: Targeting antiapoptotic proteins in AML is a key therapeutic strategy, and MCL1 is a critical antiapoptotic oncoprotein. Armed with novel MCL1 inhibitors and the potent BCL2 inhibitor venetoclax, it may be possible to selectively induce apoptosis by combining or thoughtfully sequencing these inhibitors based on a rational evaluation of AML.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Leucemia Mieloide/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirazinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Doença Aguda , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células HL-60 , Humanos , Indóis/química , Células K562 , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazinas/química , Pirazóis/química , Células THP-1 , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 8(1): 1533, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367734

RESUMO

The p53 protein is one of the major cell cycle regulators. The protein is expressed as at least twelve protein isoforms resulting from the use of alternative promoters, alternative splicing or downstream initiation codons. Importantly, there is growing evidence that translation initiation of p53 mRNA may be regulated by the structure and length of the naturally occurring variants of the 5'-terminal region of p53 mRNA transcripts. Here, several mRNA constructs were synthesized with variable length of the p53 5'-terminal regions and encoding luciferase reporter protein, and their translation was monitored continuously in situ in a rabbit reticulocyte lysate system. Moreover, four additional mRNA constructs were prepared. In two constructs, the structural context of AUG1 initiation codon was altered while in the other two constructs, characteristic hairpin motifs present in the p53 5'-terminal region were changed. Translation of the last two constructs was also performed in the presence of the cap analogue to test the function of the 5'-terminal region in cap-independent translation initiation. Superposition of several structural factors connected with the length of the 5'-terminal region, stable elements of the secondary structure, structural environment of the initiation codon and IRES elements greatly influenced the ribosomal scanning and translation efficiency.


Assuntos
Regiões 5' não Traduzidas/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Fusão Gênica Artificial , Sistema Livre de Células , Genes Reporter , Luciferases/análise , Luciferases/genética , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...